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Lung cancer is the most common cancer that cannot be ignored and cause death with late health care. Currently, CT can be used to
help doctors detect the lung cancer in the early stages. In many cases, the diagnosis of identifying the lung cancer depends on the
experience of doctors, which may ignore some patients and cause some problems. Deep learning has been proved as a popular and
powerful method in many medical imaging diagnosis areas. In this paper, three types of deep neural networks (e.g., CNN, DNN,
and SAE) are designed for lung cancer calcification. Those networks are applied to the CT image classification task with some
modification for the benign and malignant lung nodules. Those networks were evaluated on the LIDC-IDRI database. The
experimental results show that the CNN network archived the best performance with an accuracy of 84.15%, sensitivity of
83.96%, and specificity of 84.32%, which has the best result among the three networks.

1. Introduction

Lung cancer which is the most common cancer in both men
and women is a major burden of disease worldwide [1]. Some
report estimated that the number of new cases of lung cancer
is about 221,200, accounting for about 13% of all cancer diag-
noses in 2015. The mortality of lung cancer accounts for
about 27% of all cancer deaths [2]. For those reasons, lung
nodules need to be examined and watched closely when it
might be at an early stage. By the early detection, the 5-year
survival rate of patients with lung cancer can be improved
by about 50%.

Computed tomography (CT) is the most effective
method of lung nodule detection for its ability to form
three-dimensional (3D) images of the chest, resulting in
greater resolution of nodules and tumor pathology. A CT
image by computer processing to assist lung nodule diagnos-
tics has been widely used in clinic. The process of computer-
aided diagnosis (CAD) of lung cancer can be divided into a
detection system (often abbreviated as CADe) and diagnostic
system (often abbreviated as CADx). The CADe system
divides the candidate nodules identified in the previous step

into nodules or nonnodules (i.e., normal anatomic struc-
tures). The goal of the CADx system is to classify detected
nodules into benign and malignant nodules [3]. Since the
probability of malignancy is closely related to the geomet-
ric size, shape, and appearance, CADx can distinguish the
benign and malignant pulmonary nodules by the effective
features such as texture, shape, and growth rate. Thus,
the success of a particular CADx system can be measured
in terms of accuracy of diagnosis, speed, and automation
level [4].

In recent years, neural networks, rebranded as “deep
learning,” began beating traditional AI in every critical
task: recognizing speech; characterizing images; and gener-
ating natural, readable sentences. Deep learning not only
accelerates the critical task but also improves the precision
of the computer and the performance of CT image detection
and classification.

In this paper, the problem of classification of benign and
malignant is considered. It is proposed to employ, respec-
tively, the convolution neural network (CNN), deep neural
network (DNN), and stacked autoencoder (SAE). The work
can be used as input directly to reduce the complex
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reconstruction of data in the process of feature extraction
and classification.

The rest of the paper is organized as follows. Section 2
analyzes the related works. Section 3 presents the proposed
methodology for the classification of lung nodules. The
experimental results obtained are discussed in Section 4.
The conclusion of this paper was made in Section 5.

2. Related Works

Various initiatives are frequently developed aiming at
increasing the accuracy of lung cancer diagnosis using a neu-
ral network. Chen et al. [5] proposed a method that uses a
neural network ensemble (NNE) scheme to distinguish prob-
ably benign and uncertain and probably malignant lung nod-
ules. Experimental results illustrated that the scheme had
classification accuracy (78.7%) which is better than that of
the individual classifier (LVQNN: 68.1%).

In [6], Kuruvilla and Gunavathi proposed a methodology
based on texture features using the artificial neural network
(ANN), with an accuracy rate of 93.30%. Using the combina-
tion of texture and shape features for detection and classifica-
tion may result in improved classification accuracy [7].
Kumar et al. presented a methodology using the stacked
autoencoder (SAE), a deep learning technique, with an
accuracy rate of 75.01% [8].

Deep learning is based on using “deep” neural networks
comprised of a large number of hidden layers. The deep belief
network (DBN) which has undirected connections between
its top two layers and downward-directed connections
between all its lower layers [9] has been tested for classifica-
tion of malignancy of lung nodules without computing the
morphology and texture features [10]. It had reached the
sensitivity rate of 73.40% and the specificity rate of 82.20%
using the deep belief network.

Some research papers applied deep CNNs for detection
or classifications of a medical image. In 2015, Shen et al.
[11] diagnosed lung cancer on the LIDC database using a
multiscale two-layer CNN and the reported accuracy was
86.84%. In [12], Shin et al. exploit and extensively evaluate
three important, previously understudied factors on CNN
architecture, dataset characteristics, and transfer learning.

3. Materials and Methods

In this section, the proposed approach on the LIDC-IDRI
[13] dataset from the Lung Image Database Consortium is

evaluated. The complex steps of image feature extraction in
traditional medicine can be reduced by directly inputting
the original image.

3.1. Convolution Neural Networks (CNNs). A convolution
neural network (CNN) is a multilayer neural network, which
comprised of one or more convolution layers and then
followed by one or more fully connected layers as in a stan-
dard multilayer neural network. The CNN was proposed in
1960s, with the ideas like local perception, the weights of
sharing, and sampling in space or time. Local perception
can find some local characteristics of the data for the basic
features of the visual animals, such as an angle and an arc
in the picture [14]. It is a kind of an efficient identification
method which has attracted wide attention recently. The
benefit of CNNs is that they are easier to train and have many
fewer parameters than fully connected networks with the
same number of hidden units.

Convolution neural network architecture is usually used
in collaboration with the convolution layer and pool layer
[15]. The affection of the pooling layer is to confuse the fea-
tures of the specific position. Since some location features
are not important, it just needs other features and the relative
position. The pooling layer operation consists of max pooling
and mean pooling. Mean pooling calculates the average
neighborhood within the feature points, and max pooling
calculates the neighborhood within a maximum of feature
points. The error of feature extraction mainly comes from
two aspects: the neighborhood size limitation caused by the
estimated variance and convolution layer parameter esti-
mated error caused by the mean deviation. Mean pooling
can reduce the first error, retaining more image background
information. Max pooling can reduce the second error,
retaining more texture information.
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Figure 1: The architecture of the CNN.

Table 1: Parameter of the CNN.

Layer Type Input Kernel Output

1 Convolution 28× 28× 1 5× 5 24× 24× 32
2 Max pooling 24× 24× 32 2× 2 12× 12× 64
3 Convolution 12× 12× 64 5× 5 8× 8× 64
4 Max pooling 8× 8× 64 2× 2 4× 4× 64
5 Fully connected 4× 4× 64 4× 4 512× 1
6 Fully connected 512× 1 1× 1 2× 1
7 Softmax 2× 1 N/A Result
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The architecture of the CNN in this paper is showed in
Figure 1. It is composed of multiple maps in each layer; each
map is composed of multiple neural units, all the neural units
in the same map share one convolution kernel (i.e., weight),
and each convolution kernel represents a feature, such as
access to the edge of image features. The detail of the CNN
is showed in Table 1. The input data (image data) has a
strong robustness on the distortion. The multiscale convolu-
tion image feature is generated by setting the convolution
kernel size and parameter; the information of different angles
is generated in the feature space.

3.2. Deep Neural Network (DNN). A DNN is an increase in
the number of hidden nodes in a simple neural network.
The neural network can be used to carry on the more com-
plex input calculation, because each hidden layer can be the
nonlinear transformation of the output layer and the deep
neural network is better than the “shallow” network. The
nonlinear f x should be used for each hidden layer, because
if the activation function is linear, compared with the single
hidden layer neural network, the depth of the hidden layer
of the network does not enhance the ability to express. The
processing part of the pulmonary nodule is decomposed into
the DNN, so that different network layers can be used to
obtain the characteristics of the pulmonary nodules with
different sizes. There are also local extremum problems and
gradient diffusion problems in the DNN.

In the training process, the original image is used as the
input layer parameters, so as to retain a large amount of
detailed information of the image. The input layer, hidden layer,
and output layer of the DNN architecture are all connected
layers, and the DNN does not contain a convolution layer.
DNN training images and label was input into the DNN archi-
tecture; each layer of the weight in the first training is randomly

generated by Gauss distribution, setting the bias to 0. Then, the
output value calculated is the forward propagation and update
parameters are the back propagation. The depth of the neural
network structure is in Figure 2 and is further detailed in
Table 2. Because the parameters of DNN are too prone to over-
fitting [16], fine-tuning [17], increasing the data volume, and
regularization [18] are needed to solve it.

3.3. Stacked Autoencoder (SAE). A stacked autoencoder
(SAE) neural network is a multilayer sparse autoencoder of
a neural network. The sparse autoencoder is an unsupervised
learning algorithm [19]. The sparse autoencoder is divided
into three layers, namely, the input layer, hidden layer, and
output layer. The number of neurons in the input and output
layers is the same, and the number of hidden neurons is less
than that of the input layer. Figure 3 is the structure of the
sparse autoencoder. In addition, the sparse autoencoder is
divided into a coding stage and decoding stage; the coding
stage is the mapping of the input layer to the hidden layer.
The decoding phase is the mapping of the hidden layer to
the output layer. In this paper, multiple autoencoders and
softmax classifiers are combined to construct a SAE network
with multiple hidden layers and a final softmax classifier [20].

Figure 4 is the structure of the stacked autoencoder neu-
ral network. The hidden layer is the hidden layer of a single
sparse autoencoder. The diagnosis of lung nodules belongs
to the problem of image classification; each sparse autoenco-
der deletes the “decode” layer after the training is completed
and directly uses the encoding process for the next sparse
autoencoder training of the output.

3.4. Loss Functions of the Neural Network. The loss function
is as follows:

C w, b ≡
1
2n〠x

y x − a 2 + 1
2n λ〠w
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Figure 2: The architecture of the DNN.

Table 2: Parameter of the DNN.

Layer Type Input Output

1 Input 28× 28× 1 784× 1
2 Fully connected 784× 1 512× 1
3 Fully connected 512× 1 256× 1
4 Fully connected 256× 1 64× 1
5 Fully connected 64× 1 2× 1
6 Softmax 2× 1 Result
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Figure 3: Sparse autoencoder.
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where C is the cost function, w is the weight, b is the bias,
n is the number of training dataset instances, x is the
image pixel values as an input parameter, and a is the output
value. The DNN is used to carry on the back propagation
operation to modify the weight w and paranoid b, so that
the difference between the predicted value and the real value
is getting smaller and smaller, and thus, the accuracy is
improved. The last item of the loss function is to prevent
overfitting in the training process, and the sum of all weights
is divided by 2n. Another method to prevent overfitting is
dropout, which randomly shields some neurons before the
back propagation, and the masked neurons do not update
the parameters. Since the DNN needs a lot of data, but if a
large number of data are input into the neural network, it
requires a lot of memory. Therefore, in order to modify the
parameters more quickly, every time a min_batch to do a
back propagation.

The activation function of the neural network is Leaky
ReLU, which can enhance the ability of nonlinear modeling.
The ReLU activation function formula is as follows:

y =
x if x ≥ 0
0 if x < 0,

2

where x is the result of weighted priority multiplication and
paranoid addition and y is the output of the activation func-
tion. It can be seen that the derivative of ReLU is 0 if x< 0,
else 1. So ReLU eliminates the problem of the gradient of

the sigmoid activation function. However, with the continu-
ous updating of the training, the weight cannot continue to
be updated, which is known as “the phenomenon of neuronal
death.” On the other hand, the output of ReLU is more than
0, that is, the output of the neural network is offset. The above
problems can be solved using Leaky ReLU. The Leaky ReLU
activation function formula is as follows:

y = x if x ≥ 0
ax if x < 0,

3

where a is set to 0.1; a in Leaky ReLU is fixed and in the ReLU
is not fixed.

3.5. LIDI-IDRI. The database used in this paper is LIDC-
IDRI, which contains 244,527 images of the 1010 cases. Each
subject includes images from a clinical thoracic CT scan and
an associated XML file that records the results of a two-phase
image annotation process performed by four experienced
thoracic radiologists [13]. The distribution of thickness of
CT images in lung nodules is extensive. Most of them are
concentrated at 1mm, 1.25mm, and 2.5mm. The size of
the patient’s pulmonary nodules is from 3mm to 30mm.
The number of benign nodules with small diameter is larger,
and the number of malignant nodules with larger diameter is
smaller. But it is not sure that the majority of benign and
malignant nodules concentrate in the 5–10mm range.

In this paper, the location information and the degree of
malignancy of pulmonary nodules in the patient’s XML

Malignant

Benign
28 × 28 × 1

784 × 1 256 × 1 64 × 1 2 × 1

In
pu

t l
ay

er

Fu
lly

 co
nn

ec
te

d

Fu
lly

 co
nn

ec
te

d

Fu
lly

 co
nn

ec
te

d

So
ftm

ax
 la

ye
r

Figure 4: Architecture of the SAE.

(a) (b)

Figure 5: Nodular images.
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commentary file both can be obtained. In the XML file, four
radiologists would analyze the details of the pulmonary nod-
ules. Radiologists classify the degree of malignancy of pulmo-
nary nodules into five categories:

(1) Highly unlikely for cancer

(2) Moderately unlikely for cancer

(3) Indeterminate likelihood

(4) Moderately suspicious for cancer

(5) Highly suspicious for cancer.

The first two categories are identified as benign. The
latter two categories were identified as malignant. As a total,
9106 nodular images are obtained.

3.6. Data Augmentation. It is known that the sizes of the pul-
monary nodule are different. In order to obtain the textural
and size characteristics of the lung nodules, the size of the
pulmonary nodules is set at 28× 28 uniformly. Firstly, the
image of the pulmonary nodules was obtained by binary
processing, which can obtain the approximate outline of the
pulmonary nodules. Then, the value of the pulmonary nod-
ules was restored in the proceeded image to the pixels of
the pulmonary nodules. Finally, noise disturbance around
pulmonary nodules can be eliminated. The original images
and binary images contrast in Figure 5.

A large number of positive samples and negative samples
are needed to satisfy the neural network training. In this
paper, the image processing operation of translation, rota-
tion, and flip is obtained before the image was input into
the neural network, which increased the sample data of the
input image. Large number of sample data can effectively
improve the neural network training and testing accuracy,
reduce the loss function, and ultimately improve the robust-
ness of neural networks.

4. Experiments and Results

4.1. Experiment Setup. Caffe which is a deep learning frame-
work made with expression, speed, and modularity in mind
was used in this study. A total of 4581 images of lung nodules
were used in the training. Among them, 2265 cases were
benign pulmonary nodules and the other one was malignant
pulmonary nodules with 2311 images. 10% of the training
data set is used for cross-validation, about 448 pictures. The
same data set is applied to the three different kinds of
network architecture.

4.1.1. Construction of the CNN. Using the network in the
training stage, CNN learning rate is set to 0.01 and batch_size
to 32, to get the best results. In the network, the convolution
operation and the down sampling operation are carried out
two times. Two convolution layers consist of 32 filters, and
the kernel size is 5. The pooling layer has a kernel size of 2.

Table 3: The structure of the SAE.

Layer Type Input Output

1 Input 28× 28× 1 784× 1
2 Fully connected 784× 1 256× 1
3 Fully connected 256× 1 64× 1
4 Fully connected 64× 1 2× 1
5 Softmax 2× 1 Result

Table 4: Results for all architectures.

Models Accuracy Sensitivity Specificity

CNN 84.15% 83.96% 84.32%

DNN 82.37% 80.66% 83.9%

SAE 82.59% 83.96% 81.35%
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Figure 7: ROC curve of different neural networks.
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The reason of using a dropout layer is to prevent overfitting.
Two fully connected layers and a softmax function is
following at least.

4.1.2. Construction of the DNN. The DNN consists of a fully
connected layer. The input image is a two-dimensional data
input 28× 28 neural network mapped into 784× 1. The sec-
ond layer is a fully connected layer of 512× 1. The third layer
is a fully connected layer of 256× 1. After the third layer,
there will be a dropout layer, with a parameter of 0.6, in
which the unit will be hidden in 40%. The fourth layer is a
fully connected layer of 64× 1, whose activation function is
set to ReLU.

4.1.3. Construction of the SAE. The SAE is also made up of a
fully connected layer. The neurons of the autoencoder’s input
and output are the same; the autoencoder is equivalent to the
following function:

Hw,b x = x, 4

where w and b are the weight and crankiness, respectively, in
the neural network operation and x is the input parameter.
The neural network is equivalent to coding the input image.
Because of the problem of image classification, the hidden
layer generated by the self-encoder is directly used for classi-
fication, thus canceling the decoding part of the self-encoder.

During the training, the encoder-generated stack encod-
ing is used firstly, and then, the coding part of the stack
encoding network is used to apply the initializing neural net-
work after a certain number of training to the classification.
In Figure 6, the image is the contrast between the autoenco-
der that generates the pulmonary nodule image and original
image. It is found that the image after the encoder has made
the edge of the image and the characteristics of the artifacts
are not obvious. So the classification accuracy will cause some
loss. The detail of the SAE is in Table 3.

4.2. Results and Analysis. As referred in Table 4, the CNN
architecture has the best precision, with an accuracy of
84.15%, sensitivity of 83.96%, and specificity of 84.32%. The

accuracy of the DNN is 82.37%, the sensitivity is 80.66%,
and the specificity is 83.9%. The convolution neural network
obtains the good result mainly because the convolution layer
operation may obtain the characteristic from the shape and
the texture of two different dimensions. In different convolu-
tion kernels according to different weights for different image
characteristics, a convolution kernel shared parameters in the
whole process of convolution, so the convolution operation
compared with fully connected operation has fewer parame-
ters. Compared with the SAE, the DNN is not good in preci-
sion and sensitivity, but it has a better effect on specificity of
83.9%. Good specificity means that more malignant lung
nodules can be detected in the same data set, which may be
of a greater help in the early diagnosis of pulmonary nodules.
But to a certain extent, the DNN increases the number of
false-positive pulmonary nodules. The SAE and DNN are
consisting only of fully connected networks, but there are dif-
ferent ways of generating. The SAE is generated through
sparsing since the encoder training; the DNN is generated
through the fully connected layer directly since training.

In order to compare the performance of the neural
network, the ROC curve is used in the paper. Figure 7 is the
comparison of the ROC curves of the three different neural
network architectures, from which we can see that the
performance of the CNN is better than that of the SAE.
The AUC of the CNN is 0.916, of the SAE is 0.884, and
of the DNN is 0.877.

Table 5 shows some of the relevant work and the results
of this comparison. In order to increase the comparability,
the experiments in the paper are done in the same data set,
as well as the comparison of the same parameters. By
contrast, the experimental data and the results of the CNN
architecture have made some progress.

5. Conclusion

In this paper, three important deep neural networks were
exploited and extensively evaluated. The prediction in the
classification of benign and malignant pulmonary nodules

Table 5: Comparison with other papers.

Work Database (samples) Accuracy (%) Sensitivity (%) Specificity (%)

Nascimento et al. [21] LIDC (73) 92.78 85.64 97.89

Orozco and Villegas [22] NBIA-ELCAP (113) N/A 96.15 52.17

Krewer et al. [7] LIDC-IDRI (33) 90.91 85.71 94.74

Dandil et al. [23] Private (128) 90.63 92.30 89.47

Parveen and Kavitha [24] Private (3278) N/A 91.38 89.56

Kuruvilla and Gunavathi, 2014 [6] LIDC (110) 93.30 91.40 100

Gupta and Tiwari [25] Private (120) 90 86.66 93.33

Hua et al. [10] LIDC (2545) N/A 73.30 78.70

Kumar et al. [8] LIDC (4323) 75.01 83.35 N/A

da Silva [26] LIDC-IDRI (8296) 82.3 79.4 83.8

CNN (this paper) LIDC-IDRI (5024) 84.15% 83.96% 84.32%

DNN (this paper) LIDC-IDRI (5024) 82.37% 80.66% 83.9%

SAE (this paper) LIDC-IDRI (5024) 82.59% 83.96% 81.35%
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was compared in LIDC-IDRI. The experimental results sug-
gest that the CNN archived the best performance than the
DNN and SAE. The layers of the neural network in this paper
are relatively small, due to the limitations of the data sets.
The proposed method can be expected to improve accu-
racy of the other database. The method can be generalized
to the design of high-performance CAD systems for other
medical imaging tasks in the future.
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